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Abstract— Universal similarity equations of non-Darcy mixed convection along an isothermal vertical
plate and a uniform-flux horizontal plate in porous media are obtained by introducing proper trans-
formation variables. Very accurate similarity solutions and comprehensive correlation equations of the
local Nusselt numbers are presented over the entire range of flow inertia including the Darcy and non-
Darcy regimes for any mixed convection intensity from the pure forced convection limit to the pure natural
convection limit. The finite-difference solution and correlation of the local Nusselt number for any extent
of flow inertia are also presented for natural convection along a vertical plate with uniform wall heat flux.

1. INTRODUCTION

HEeAT TRANSFER in fluid-saturated porous media has
been studied extensively [1-15]. Although most of the
studies were based on the Darcy flow model, non-
Darcy convection has received more and more atten-
tion [6-15] since Vafai and Tien [6] first investigated
the inertia and boundary effects on forced convection
heat transfer. As has been shown in ref. [6] for forced
convection and refs. [10-12] for natural convection,
the inertia and boundary effects are very significant in
high-porosity media but not very important in low-
porosity media.

In the previous analyses [7-12] of non-Darcy natu-
ral convection along an isothermal vertical plate,
different types of formulations have been used. Plumb
and Huenefeld [7], and Chen and Ho [8], utilized
the conventional similarity variables of Darcy natural
convection [1] and introduced an inertial parameter
Gr’. Bejan and Poulikakos [9] proposed similarity
variables of proper scales for the non-Darcy flow
limit, and used an inertial parameter G which is an
inverse-square-root of Gr'.

In this paper, we propose new similarity variables
that are novel combinations of the previous two types
of similarity variables. A quite different inertial par-
ameter is also introduced, which measures the whole
range of flow inertia from 0 (Darcy flow) to 1 (non-
Darcy flow limit for which inertia is completely domi-
nant). With the present similarity variables and iner-
tial parameter, the transformed similarity equations
are valid uniformly over the Darcy and non-Darcy
regimes of any flow inertia. In addition, a very accur-
ate (maximumn error less than 1.9%) correlation equa-
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tion of the local Nusselt number for the entire range
of flow inertia can be derived in terms of the inertial
parameter and the dimensionless heat transfer groups
defined for the cases of Darcy flow and non-Darcy
flow limit. A similar solution method has been applied
to the natural convection systems of a vertical plate
and a horizontal plate maintained with uniform wall
heat flux.

We begin the analysis from non-Darcy mixed con-
vection to cover the cases of pure natural convection
and pure forced convection. For non-Darcy mixed
convection from an isothermal vertical plate and a
horizontal plate with uniform heat flux, universal
similarity equations for the entire regimes of flow
inertia and mixed convection intensity can be obtained
by introducing a proper mixed convection parameter
and dimensionless transformation variables. The pre-
sent similarity equations differ markedly from the pre-
viously reported ones [4, 5, 13-15]. In terms of the
properly defined parameters of inertia and buoyancy,
we have derived comprehensive correlation equations
of the local Nusselt numbers for any mixed convection
intensity from the pure forced convection limit to the
pure natural convection limit over the entire range of
flow inertia. The maximum deviation of the corre-
lation from the numerical results is less than 6% in
the whole domain of flow inertia and mixed con-
vection intensity. To the knowledge of the authors, the
correlation equation of non-Darcy natural convection
or mixed convection in porous media does not seem
to have been reported previously.

2. MATHEMATICAL FORMULATION

2.1. System equations
Consider the mixed convection flow along a vertical
or a horizontal flat plate embedded in a fluid-saturated
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K permeability [m?]

m constant exponent

n constant exponent
Nu  local Nusselt number
p pressure [Nm™ %]

Pe local Peclet number, .. x/o

q heat flux [Wm™?

R buoyancy parameter defined in equations
(12) and (13)

Rap Darcy-modified Rayleigh number for the
UWT case, gB(T,— T, )Kx/av

Ra}  Darcy-modified Rayleigh number for the
UHF case, gf(g,x/k)Kx/av

Ra, modified Rayleigh number for the
non-Darcy flow limit, UWT case,
gﬁ(Tw— Tx)(xl/b)/az

Ra¥ modified Rayleigh number for the

non-Darcy flow limit, UHF case,

9B(qux/k)(x*/b)/o

NOMENCLATURE
A dimensionless heat transfer groups of T temperature [K]
Darcy natural convection u, v volume-averaged velocity components in
b inertia coefficient in the Forchheimer the x- and y-direction [ms™ "]
model [m™ ] x,y  coordinates parallel and normal to the
B dimensionless natural convection heat plate [m].
transfer groups of non-Darcy flow
limit
C dimensionless heat transfer group of Greck symbols' e
. s o effective thermal diffusivity of the
forced convection, Nu,./Pe" . s 4
. . . saturated porous medium [m*s ']
f dimensionless stream function . . |
L . s Ji] coefficient of thermal expansion (K™ ']
g gravitational acceleration [ms -} - . . . .
. L inertial parameter defined in equations
h local heat transfer coefficient
Wm-2K- ] (14) and (15)
. . A 24 R
k thermal conductivity of fluid-saturated ) Pg + . )
. N n dimensionless coordinate, (y/x)4
porous medium [Wm~™'K™'] . .
0 dimensionless temperature :

(T-T)/(T,—T,,) for the UWT

case; (T— T, )A/(qux/k) for the UHF case
kinematic viscosity of the fluid [m?s™ ']
mixed convection parameter,
(1+Pe'?/R)™!

-

e

P fluid density [kgm™*]
¢ angle of plate inclination measured from
the horizontal

[} stream function.
Subscripts

D Darcy

F forced convection

M mixed convection

n non-Darcy

N natural convection

w at the wall

o0 in the ambient.

porous medium which is homogeneous, isotropic and
in thermal equilibrium. The plate is maintained either
with a uniform wall temperature (UWT) or a uniform
wall heat flux (UHF). Physical properties such as
viscosity, heat conductivity and thermal expansion
coefficient are assumed to be constant. In addition,
we assume the Boussinesq and boundary-layer ap-
proximations are valid. Under the above assump-
tions and using the flow model of Forschheimer, the
volume-averaged conservation equations can be
written as
du dv

LY ()

ox 0y

w(oK4bu) = — ; P LghT-T)sing ()

-
0=~ P gp(T—T.,)c0s ¢ G)
p dy
oT  éT T
W v =gy 4
Ox dy oy’

where K and o are the permeability and the equivalent
thermal diffusivity of the fluid-saturated porous
medium, and & is an inertial coefficient in the Forch-
heimer model. The inclination angle ¢ is measured
from the horizontal (¢ = 0) to the vertical (¢ = n/2).
The plus sign in front of the last term of equation
(2) denotes natural convection and buoyancy-assisted
mixed convection, while the minus sign denotes
buoyancy-opposed mixed convection.
The appropriate boundary conditions are

at y=0, v=0, T=T, or —k(0T/0y)= q.
&)
as y—o o, u=u,, 1=T,. (6)

For natural convection, u_, = 0.

2.2. New transformation variables

A new dimensioniess coordinate for analysing
mixed convection from a vertical or a horizontal flat
plate in porous media is defined as
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n=(y/x)A N
with
A=Pe'+R &
where the Peclet number Pe is defined as
Pe = u, xja &)

and the variable R that represents the buoyancy effect
is an appropriate combination of the Darcy-modified
Rayleigh number

Rap = gB(T,, — T )Kx/av UWT
Ra} = gB(g.x/k)Kx/ov UHF

{102)
(10b)

and the modified Rayleigh number for the non-Darcy
flow limit

Ra, = gB(T, — T )(x*/b)/a® UWT
Ra} = gB(qux/k)(x*[b)ja*  UHF.

For natural convection along a vertical plate in porous
media, R is defined as

R=(Ra;"*+Ra; "' UWT
R = (Ra¥™ "*+Ra*"'5~! UHF

(11a)
(11b)

(12a)

(12b)

while for natural convection over a horizontal plate
R=(Rag'*+Ra; %! UWT  (13a)
R=(Rat~ """+ Ra*""5~' UHF. (13b)

We also introduce new inertial parameters as

{=(l+Ra)*Raf{)~! UWT  (14a)
{=(+Ra*"’/RaV>)"' UHF (14b)
for the cases of a vertical plate; and
{=(1+Ral*/Raf*)~! UWT  (15a)
{=(+Ra*V*/Rag"H~' UHF (15b)

for the cases of a horizontal plate. The inertial par-
ameter for each case describes the strength of inertial
effects. For the limiting case of Darcy flow with inertia
totally neglected, { = 0. Whereas { = 1 represents the
case of non-Darcy flow limit for which inertia is com-
pletely dominant.

A new mixed convection parameter is proposed
here as

&= (1+Pe'?/R)~! (16)

where the buoyancy effect parameter R has been
defined in equations (12a), (12b) and (13a), (13b) for
various natural convection cases. The mixed con-
vection parameter ¢ is a measure of the relative inten-
sity of natural convection to forced convection. For
the case of pure forced convection, ¢ = 0. Whereas
for the case of pure natural convection, & = 1.

In addition to the dimensionless coordinates and
parameter, we also defined the dimensionless stream
function

2861
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and the dimensionless temperature
0=(T-T)/(T,—T,) UWT  (i8a)
0= (T—T,)A\(g.x/ky UHF.  (18b)

2.3. Similarity equations of a vertical plate with UWT

For mixed convection along a vertical plate with
uniform wall temperature (UWT), equations (1)—(6)
can be transformed into the following similarity equa-
tions:

2SS+ A-0E = L0 19
200+ 0 =0 (20

f0) =0, 6(0)=1 (21a,b)
f(e0)=(1-87% 0O(0)=0. (22ab)

The plus and minus signs in front of the right-hand
side of equation (19) represent the buoyancy-assisting
and buoyancy-opposing mixed convection, respec-
tively. The local Nusselt number of this mixed con-
vection system can be expressed as

Nuy = hx/k = A[—0/(0)) (23a)
= ¢ (1-0)Rag’*[—6'(0)] (23b)
= ¢~ Ra,*[-€(0)] (23¢)
= (1=¢§)"" Pe'*[-6(0)]. (23d)

The transformed similarity equations for pure natu-
ral convection along an isothermal vertical plate are
readily obtained from equations (19)-(22) by letting
¢ = 1. The reduced momentum equation is

A0 =0 29

with the boundary condition /7 (o0) = 0 reduced from
equation (22a). The local Nusselt number reduced
from equation (23) is

Nuy = (1 ={)Rag*[—0(0)] (25a)

={ Ra,/*[-8'(0)]. (25b)

On the other hand, the transformed similarity equa-
tions and the local Nusselt number for pure forced
convection are obtained from equations (19) to (23)

by letting £ = 0. The local Nusselt number for forced
convection is obtained as

Nug = Pe[—§(0)]. (26)

2.4, Similarity equations of a horizontal plate with
UHF
For mixed convection along a horizontal plate with
uniform wall heat flux (UHF), the transformed simi-
larity equations are
4c6fzfn+2(1 *5)452./‘!/ — i Cﬁ(ﬂ6’—9)
200+ f6— =0
f©) =0, §0)=~—1

@n
(28)
29
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S(e) = (1=8)2 0(c) = 0. (30)
The local Nusselt number is expressed as
Nuy, = hxjk = A[1/0(0)] (31a)
=& '(1=0)Rais " *[1/0(0)] (31b)
=<7 RaF10(0)] (3le)
= (-9 P10, (31d)

For natural convection along a constant-flux hori-
zontal plate, the similarity momentum equation
reduced from equation (27) by letting &=1 is
obtained as

A 2100 = +0 =0 (32)

The local Nusselt number is
Nuy = (1 =0 Raf"*[1/0(0)] (33a)
= { Rar"°[1/0(0)]. (33b)

2.5. Non-similarity equations of non-Darcy natural
convection along a vertical plate with UHF

For non-Darcy natural convection along a vertical
plate with uniform wall heat flux (UHF), the inertial
parameter defined in equation (14b) is dependent on
x. Therefore, this system will not permit similarity
solutions. The transformed non-similarity equations
and boundary conditions are

:5./»/‘/-~_|_(1 C)3_/M =0
1 10-¢ . 5+¢ s
2] +i,,5.wf(} _ 1? f f

I
e af
:|l<$(1_s)(./ 2o —0 1 (35)
06 oS

(34)

FE0) =0 00 =—1 (36)
S Low)=0, 0 x)=0. 37
The local Nusseit number for this system is
Nuy = (1 -0 Ra'[1/0(L,0)] (38a)
= { Ra*'"{1/0(L,0)). (38b)

For Darcy ({ = 0) and extremely non-Darcy ({ = 1)
natural convection, equation (35) can be reduced to
the similarity equation for each case.

3. CORRELATIONS

3.1. Natural convection

For natural convection in porous media over the
entire range of flow inertia, we propose a correlation
equation of the form

(1/Nupn)™ = (1/Nup)” +(1/Nu,)™,  m >0 (39)

where Nug, and Nu, are the Nusselt numbers of natural
convection for the asymptotic cases of Darcy and non-
Darcy flow limits, respectively. The exponent m is a
positive constant that can be specified by comparison
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with the numerical data. Equation (39) can be written
alternatively as

Nug/R=[A "(1={)"+B "] ' (40)

where the dimensionless natural convection heat
transfer groups 4 and B. respectively for the Darcy
flow and the non-Darcy flow limit, are defined in
Table 1 for the various cases of natural convection,

3.2. Mixed convection

The basic form of the correlation equation of mixed
convection in porous media is essentially the same as
that in a single phase fluid introduced by Churchill
6]

Nuy = Nub:+Nuy, n >0 4n

where Nup and Nuy are the local Nusselt numbers of
forced and natural convection, respectively. The plus
and minus signs in front of the last term of equation
(41) refer to the buoyancy-assisting and buoyancy-
opposing cases, respectively. By substituting equation
(39) into equation (41), we obtain

Nupy = N+ [(Nus™ + Nu, ™) 7770 (4D
This equation can be expressed alternatively as
Nuygfr = {C"(1 =) £[4 " (1"
+B eyt (43)

where the dimensionless heat transfer groups A and

B for various natural convection cases are presented

in Table 1. The dimensionless forced convection heat

transfer group C is defined as C = Nu/Pe'™.
Equation (43) can also be rewritten as

Y'=1+X" (44)
where
Ny /s
Y= M 45
Ci=9) )
and
4 A " 1__: m B mm i/
X = C[i ( ) +, "] . (46)

(-9

4. RESULTS AND DISCUSSION

4.1. Numerical results

Precise numerical solutions for the similarity equa-
tions of mixed convection or natural convection can
be obtained easily by using the shooting method and a
fourth-order Runge-Kutta integration scheme. They
were also solved by Keller’s Box method [17] to check
the accuracy. The non-similarity partial differential
equations (34)—(37) for the case of natural convection
along a vertical plate with UHF are solved by Keller’s
Box method. To conserve space, only the numerical
results of the dimensionless heat transfer groups A,
B, and C in correlation equations (40) and (43) are
presented. The present results of 4 and B for the
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Table 1. The definitions and values of the dimensionless heat transfer
groups A and B for various natural convection cases

Cases A for Darcy flow B for non-Darcy flow limit
Vertical plate
UWT Nup/Ralf* = 0.44388 Nu,/Ra)* = 0.49380
0.4440 [1] 0.494 [9]
0.44390 [7]
UHF Nug/Rag"? = 0.77149 Nu,/Ra*'* = 0.80573
0.7723 [3] 0.804 [9]

Horizontal plate
UHF Nup/RatV* = 0.85884
0.8588 [3]

Nu,/Ra*''® = 0.85098

various natural convection cases of Darcy flow and
non-Darcy flow limit are listed and compared with
the reported data [1, 3, 7, 9] in Table 1. The value of
C = Nug/Pe'? for pure forced convection of the
UWT case is 0.56423 and that of the UHF case is
0.88616. They coincide excellently with the reported
data of 0.5641 [4] and 0.8862 [5], respectively.

4.2. Natural convection

Typical dimensionless longitudinal velocity profiles
f() = u/(a/x)R? are presented in Fig. 1 for the case
of a vertical plate with UWT. While typical profiles
of the dimensionless temperature are shown in Figs.
2 and 3 for vertical plates with UWT and UHF,
respectively. As can be seen from these figures, the
profiles for various flow inertia are very similar. This
indicates that the present definitions of the similarity
variables and the inertial parameters are very appro-
priate.

The decrease of Nuy/Ra%'* with increasing the
inertial parameter Ra8"?/Ra*"> = {J(1—{) is shown
in Fig. 4 for the case of a vertical plate with UHF.

- =0,0.1,0.2,0.3,0.4

e £ =1,0.9,0.8,%*+,0.5

Vertical plate

UWT Case

10

Fi1G. 1. Dimensionless velocity profiles of natural convection
along a vertical plate with UWT.

————=0,0.1,0.2,0.3,0.4

——C =1,0.9,0.8,*°,0.5

e 1 Vertical plate
0.44 UWT Case
0.2
0 o 2 R
g 2 4
n 6 8 10
FiG. 2. Dimensionless temperature profiles of natural

convection along a vertical plate with UWT.

———— 0 =0,0.2,0.2,0.3,0.4

——0=1,0.9,0.8,°*°,0.5

Vertical plate

UHF Case

10

FiG. 3. Dimensionless temperature profiles of natural
convection along a vertical plate with UHF.
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I Asymptote for §=0 ] Vertical plate
-1 O
j —.— Asymptote for =1 ~ | UHF Case
©
o 3
ea ]
*Q
[
<
-
5
3
‘o
= Vertical plate , .
= h ~-—- Correlation eq.(40) with m=4
] UHF Case ~
] o —~—— Numerical data
o -
|O f}
- o 0.2 0.4 ' 0.6 = 0.8 @ 1.0
G T TTTTT T BRI AL P AL 2 . . . .
0 T VAT 0

Rag 3/Rar’; = g/(1-T)

Fic. 4. Heat transfer results for non-Darcy natural
convection along a vertical plate with UWT.

This figure clearly shows an asymptotic regime of
Darcy flow, an intermediate regime about
Ra¥'?/Ra*"* =1 or {=0.5, and an asymptotic
regime of non-Darcy flow limit. The corresponding
curve for a plate with UWT will be shown in Fig. 12
as a special case (£ = 1).

For natural convection along a vertical plate, the
correlation equation (40) with m = 3 for the UWT
case and that with m = 4 for the UHF case are pre-
sented in Figs. 5 and 6, respectively. Comparisons
between the correlated results and the numerical data
show that the agreement is excellent. The maximum
deviation between the correlated and calculated local
Nusselt number over the entire regime of flow inertia
is less than 2.99% for the UWT case and is less than

S
~
E Vertical plate
| UWT Case
<

-——- Correlation eq.(40) with m=3

~ —— Numerical data

FiG. 5. A comparison between the correlated and the
calculated Nuy for non-Darcy natural convection along a
vertical plate with UWT.

Fi1G. 6. A comparison between the correlated and the
calculated Nuy for non-Darcy natural convection along a
vertical plate with UHF.

1.7% for the UHF case. If we set m = 2.8 instead of 3
for the UWT case, the maximum error will be reduced
from 2.99 to 1.9%. For the case of a horizontal plate
with UHF, the maximum error of the correlation
equation (40) with m = 5 is less than 0.91% over the
whole inertia regime.

4.3. Mixed convection

Representative profiles of the dimensionless vel-
ocity f'(n) = u/(2/x)A* and the dimensionless tem-
perature 8(n) are respectively shown in Figs. 7 and 8
for the case of a vertical plate with UWT. These figures
show the evolution of the profiles from the forced
convection limit (¢ = 0) to the natural convection

w
] Vertical plate, UWT
Q: Assisting flow
~ T =0.5
0
e
'
£=1,0.9,0.8,--+,0.1,0
~
= \
= P /
Q— \\§ /
. \
Q.-
< T =T T T y v T
g 2 4 6 8 10

FiG. 7. Variations of the dimensionless velocity profiles with
¢ for mixed convection along a vertical plate with UWT,
{=05.
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]
1 Vertical plate, UWT
::- Assisting flow
. £=0.5
L}
R
6 1 —— £=0,0.1,0.2,0.3,0.4
:.. W\ -— £=1,0.9,0.8,0.7,0.6
N
-
@ ¥ ) T 1
0 2 4 6 8 10
n

F1G. 8. Variations of the dimensionless temperature profiles
with £ for mixed convection along a vertical plate with UWT,
{=05.

limit {£ = 1). We plot these figures with { = 0.5 since
the intermediate regime is around the value of the
inertial parameter, as can be seen from Figs. 4-6.

The effect of flow inertia to the dimensionless tem-
perature profile of a vertical plate with UWT is pre-
sented in Fig, 9 for a typical assisting mixed con-
vection flow of & = 0.5. The increase of flow inertia
resulted in an increase of boundary-layer thickness
and consequently caused a decrease of heat transfer
rate, as will be seen in Figs. 10 and 12.

The effects of flow inertia and mixed convection
intensity on the local heat transfer rate for a vertical
plate with UWT are shown in Fig. 10. While their
effects on the local wall temperature for a horizontal
plate with UHF are shown in Fig. 11. Each of these
figures shows that the local Nusselt number increases

Vertical plate, UWT
Assisting flow
£ =0.5

g=0,0.1,*++,0.9

F1G. 9. Variations of the dimensionless temperature profiles
with { for mixed convection along a vertical plate with UWT,
¢=0.5.
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=)
] Vertical plate
- UWT Case
S_ £ =0-0.4 7
- E .8
&E - .9
g |
ko) Assisting
3 £flow
- ] Opposing flow
)
Q
™ 3
9] 10 0 0 0

FiG. 10. Variations of Niw,/Pe'? with Ra}?/Pe'* for mixed
convection along a vertical plate with UWT.

from the forced convection asymptote to the natural
convection asymptotes of different { as the buoyancy
parameter Ral{®/Pe'? or Ra}!*/Pe'? increases. With
regard to the effect of flow inertia, Figs. 10 and 11
show that, for the assisting mixed convection, the local
Nusselt number decreases as the inertial parameter {
increases. Whereas for the opposing mixed convec-
tion, the effect is reversed. The decrease of the local
Nusselt numbers with increasing flow inertia can also
be seen in Figs. 12 and 13. For specific mixed con-
vection intensities (¢ = 0.1-1), the local Nusselt num-
bers decrease from the Darcy asymptotes through an
intermediate region to the asymptotes of the non-
Darcy flow limit.

Comparisons between the correlated results and the

=
: Horizontal plate
© UHF Case
3
15
=
z
a1 Assisting
9 flow
3 ™
] Opposing
o Flow
™ T | 3
0 0 0 0 10 Q
Ra;*/pe‘l

FIG. 11. Variations of Nuy/Pe'/> with Ra%"*/Pe"* for mixed
convection over a horizontal plate with UHF.
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Vertical plate

Libii

UWT Case

|

=3
19,

AR TSR v e i v iy B
Ra}/Ral=r/(1-L)

FiG. 12. Variations of Nuy/Ray” with Raj?*/Ra.* for mixed
convection along a vertical plate with UWT.

numerical data of mixed convection are presented in
Figs. 14 and 15 for the cases of a vertical plate with
UWT and a horizontal plate with UHF, respectively.
Over the entire regimes of flow inertia (0 <{ < 1)
and mixed convection intensity (0 < ¢ < 1 for assisting
flow, and 0 < & < 0.3 for opposing flow before boun-
dary-layer separation occurs), the maximum error of
equation (43) with m =n =3 is 11.3% for assisting
flow, and 8.25% for opposing flow, for the case of a
vertical plate with UWT. While for a horizontal plate
with UHF, the maximum error of equation (43) with
m=n=41is 5.87% for assisting flow and 4.05% for
opposing flow. The maximum error of the correlation
equation can be reduced significantly if different pairs
of m and n are taken for different mixed convection

©
OO_‘
v '—_
*O
[ -~
S
[
-
'_O
] Horizontal plate
b UHF Case
o
M e SRR EEALI MR ML AR RLEL g AN
or o 10 o o°

e */6
Ra 5 /Ran

FiG. 13. Variations of Nuy/Ra%"* with Rag'*/Ra¥'¢ for
mixed convection over a horizontal plate with UHF.
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6 5
Vertical plate
5F UWT Case
2 Numerical
o L=0
a 0.2
v 0.3
E 0.4
> 0.5
. 0.6
A 0.7
v 0.8
» 0.9
° 1
(. L
4 5 6

F1G. 14. A comparison between the correlated and calculated
Nuy for mixed convection along a vertical plate with UWT.

intensity over the whole range of flow inertia, or for
different flow inertia over the entire mixed convection
regime. The maximum error of the correlation for a
vertical plate with UWT can thus be reduced from
11.3% (when m = n = 3 is taken for any inertia) to
less than 6%, as shown in Table 2.

For Darcy mixed convection ({ = 0), the maximum
error of equation (43) with »n =2 is within 0.44%
for assisting flow over the whole mixed convection
regime, and 0.2% for opposing flow. Figure 16 shows
the excellent agreement between the correlated and
the calculated local Nusselt numbers for Darcy mixed
convection along a vertical plate with UWT.

5. CONCLUSIONS

We have introduced appropriate parameters of
inertia and mixed convection, and transformation

6
Horizontal plate
5T UHF Case
4 Numerical
Y o =0
a Q.2
3 ° 0.3
o 0.4
s 0.5
2 . 0.6
. 0.7
v 0.8
1 L] 0.9
. 1
o I L i s 1
4] 1 2 3 4 5 6

F1G. 15. A comparison between the correlated and calculated
Nuy, for mixed convection over a horizontal plate with UHF.
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Table 2. Values of m and n and the maximum error of the
correlations over the whole range of mixed convection

Maximum error (%)

¢ m n Assisting Opposing
0 2 0.44 0.20
0.1 2 2 0.73 0.33
0.2 2 2 2.27 0.61
0.3 2 2 5.55 0.32
0.4 2 3 592 4.38
0.5 3 3 3.02 0.67
0.6 3 3 2.86 2.28
0.7 3 3 4.75 2.67
0.8 4 4 1.93 0.11
0.9 4 4 0.57 0.07
1.0 4 0.68 0.05

variables that are within proper scales for any flow
inertia and arbitrary mixed convection intensity. For
non-Darcy mixed convection from a vertical plate
with UWT and a horizontal plate with UHF, uni-
versal similarity equations have been derived, which
are readily reducible to the conventional equations of
various special cases. Simple but comprehensive and
very accurate correlations of the local Nusselt num-
bers have been developed in terms of the inertial par-
ameter, the mixed convection parameter, and the
dimensionless heat transfer groups of forced con-
vection and natural convection. The deviations
between the numerical data and the predicted results
from the correlation equations are within 2% for non-
Darcy natural convection of any flow inertia, and 6%
for mixed convection over the entire regimes of inertia
and buoyancy.

6
Vertical plate
5—
UWT Case, T=0
4.—
Y v =1+ x*
3~
— Correlation
2k
o Numerical data
1
2 2
Y =1 -X
0 " L L d I
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FiG. 16. A comparison between the correlated and calculated
Nuy, for Darcy mixed convection along a vertical plate with
UWT.
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The present correlation and method of analysis can
be applied to the other natural convection and mixed
convection systems in porous media. The systems with
thermal dispersion effects taken into account can also
be analyzed by a similar procedure.
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FORMULATIONS UNIVERSELLES ET CORRELATIONS ETENDUES POUR LA
CONVECTION NATURELLE NON-DARCYENNE ET CONVECTION MIXTE DANS
DES MILIEUX POREUX

Résumé—Des équations universelles de similitude pour la convection mixte non-darcyenne le long d’une
plaque verticale isotherme et une plaque horizontale dans des milieux poreux sont obtenues en introduisant
des variables convenables de transformation. Des solutions affines trés précises et des corrélations étendues
de nombres de Nusselt locaux sont présentées dans le domaine entier d’écoulement incluant les régimes
darcyen et non-darcyen pour une convection mixte quelconque entre la limite de convection forcée pure
et celle de la convection naturelle pure. La solution aux différences finies et la corrélation du nombre de
Nusselt local sont aussi présentées pour la convection naturelle le long d’une plaque verticale avec densité
de flux thermique uniforme a ia paroi.

ALLGEMEINE BESCHREIBUNG UND KORRELATION DER NATURLICHEN
KONVEKTION UND DER MISCH-KONVEKTION IN POROSEN MEDIEN AUSSERHALB
DES DARCY’SCHEN BEREICHS

Zusammenfassung—Durch Einfithrung spezieller Transformationsvariabler ergeben sich universelle
Ahnlichkeitsgleichungen fiir die Misch-Konvektion auBerhalb des Darcy’schen Bereichs entlang einer
isothermen senkrechten Platte und einer gleichformig beheizten waagerechten Platte in einem pordsen
Medium. Es werden sehr genaue Ahnlichkeitslosungen und Korrelationsgleichungen fiir die &rtliche
Nusselt-Zah! vorgestellt, und zwar fiir den gesamten Bereich der Stromungstrigheit innerhalb und auferhalb
des Darcy’schen Gebietes fiir jede Intensitit der Mischkonvektion von der Grenze der erzwungenen
Strdmung bis zur Grenze der natiirlichen Strémung. Fiir eine natiirliche Konvektionsstromung an einer
senkrechten gleichférmig beheizten Platte wird die Ortliche Nusselt-Zahl in einem groBen Bereich der
Strémungstragheit mit Hilfe eines Finite-Differenzen-Verfahrens berechnet und anschlieBend korreliert.

VYHHUBEPCAJIBHBIE ®OPMYJIMPOBKHU N OBOBIIAIONIME COOTHOHIEHUA 15
ECTECTBEHHOM U CMEMAHHOI KOHBEKIIMM B MOPUCTbHIX CPEJIAX, HE
OIIUCBLIBAEMO!I 3AKOHOM JAPCH

Amnorams—C NOMOILLBIO BBEAEHHS COOTBETCTBYIOILHX MEPEMEHHBIX MOJIyYEHbl YHHBEpCAaJIbHBIE aBTO-
MOJIE/ILHBIE YPABHEHMS [UIsl He ONIMChIBaeMOM 3ak0HOM Jlapcu CMeliaHHOH KOHBEKINK BAOJIb H30TEPMH-
YeCKOil BEPTHKANLHON TUIACTHHBI M IOPH3OHTAJIBHOM IUIACTMHBI C OJHOPOAHBIM TEIUIOBBIM IOTOKOM,
KOTOpbie TOTPYXeHbl B NOPHCTYIO cpedy. IlpeacTaBieHsl TOUHBIC aBTOMOJE/IBHBIC PEIlicHHS ¥ 0606-
IIAOIIAE COOTHOLUEHUA A4 JOKAIbLHBIX uncen HyccenbTa, BRIOYAs peXXHMEI, OMHCHIBaeMbIe H He ONH-
ChiBaeMple 3akoHOM JlapcH, KOrma KOHBEKUMS H3MEHSETCS OT YHCTO BBIHYXHCHHOH HO 4HCTO
ecrecTBenHOM. TIpMBOIATCA TakXKe KOHEYHO-PA3HOCTHOE pelleHHe M 0600leHHOe COOTHOUICHWE s
JIoKasI5Horo ncia HycceapTa B YCJIIOBHSAX €CTECTBEHHOH KOHBEKIHM BIOJIb BEPTHKAIbLHOH IUIACTHHLI C
OHOPOJHBIM TEILTOBLIM IIOTOKOM Ha CTEHKE.



